AI,机器学习和深度学习之间有什么区别?
时间:2018-07-23 来源:Oracle 点击:
次
AI,机器学习和深度学习之间有什么区别?人工智能意味着让计算机以某种方式模仿人类的行为。机器学习是AI的子集,它包含使计算机能够从数据中找出事物并交付AI应用程序的技术。同时,深度学习是机器学习的一个子集,它使计算机能够解决更复杂的问题。
What's the Difference Between AI, Machine Learning, and Deep Learning?
AI,机器学习和深度学习之间有什么区别?
AI means getting a computer to mimic human behavior in some way.
Machine learning is a subset of AI, and it consists of the techniques that enable computers to figure things out from the data and deliver AI applications.
Deep learning, meanwhile, is a subset of machine learning that enables computers to solve more complex problems.
What Is AI?
Artificial intelligence as an academic discipline was founded in 1956. The goal then, as now, was to get computers to perform tasks regarded as uniquely human: things that required intelligence. Initially, researchers worked on problems like playing checkers and solving logic problems.
If you looked at the output of one of those checkers playing programs you could see some form of “artificial intelligence” behind those moves, particularly when the computer beat you. Early successes caused the first researchers to exhibit almost boundless enthusiasm for the possibilities of AI, matched only by the extent to which they misjudged just how hard some problems were.
Artificial intelligence, then, refers to the output of a computer. The computer is doing something intelligent, so it’s exhibiting intelligence that is artificial.
The term AI doesn’t say anything about how those problems are solved. There are many different techniques including rule-based or expert systems. And one category of techniques started becoming more widely used in the 1980s: machine learning.
What Is Machine Learning?
The reason that those early researchers found some problems to be much harder is that those problems simply weren't amenable to the early techniques used for AI. Hard-coded algorithms or fixed, rule-based systems just didn’t work very well for things like image recognition or extracting meaning from text.
The solution turned out to be not just mimicking human behavior (AI) but mimicking how humans learn.
Think about how you learned to read. You didn’t sit down and learn spelling and grammar before picking up your first book. You read simple books, graduating to more complex ones over time. You actually learned the rules (and exceptions) of spelling and grammar from your reading. Put another way, you processed a lot of data and learned from it.
That’s exactly the idea with machine learning. Feed an algorithm (as opposed to your brain) a lot of data and let it figure things out. Feed an algorithm a lot of data on financial transactions, tell it which ones are fraudulent, and let it work out what indicates fraud so it can predict fraud in the future. Or feed it information about your customer base and let it figure out how best to segment them. Find out more about machine learning techniques here.
As these algorithms developed, they could tackle many problems. But some things that humans found easy (like speech or handwriting recognition) were still hard for machines. However, if machine learning is about mimicking how humans learn, why not go all the way and try to mimic the human brain? That’s the idea behind neural networks.
The idea of using artificial neurons (neurons, connected by synapses, are the major elements in your brain) had been around for a while. And neural networks simulated in software started being used for certain problems. They showed a lot of promise and could solve some complex problems that other algorithms couldn’t tackle.
But machine learning still got stuck on many things that elementary school children tackled with ease: how many dogs are in this picture or are they really wolves? Walk over there and bring me the ripe banana. What made this character in the book cry so much?
It turned out that the problem was not with the concept of machine learning. Or even with the idea of mimicking the human brain. It was just that simple neural networks with 100s or even 1000s of neurons, connected in a relatively simple manner, just couldn’t duplicate what the human brain could do. It shouldn't be a surprise if you think about it; human brains have around 86 billion neurons and very complex interconnectivity.
|
相关文章
- 机器学习产业Longlist长名单(TOP44) 机器学习 人工智能 标杆企业
- 全球及中国机器学习行业发展研究报告(2024-2030年版) 机器学习 人工智能 机器学习报告
- 《全球机器学习行业技术及市场前景展望报告》(全球技术及市场版) 机器学习 人工智能 机器学习报告
- Oracle:什么是机器学习? 机器学习 人工智能 深度学习
- 人工智能,机器学习和深度学习之间有什么区别? 人工智能 机器学习 深度学习 AI GPU
- AUTO TECH 2025 华南展——第十二届广州国际汽车技术展览会 汽车电子 智能汽车
- 汇聚创新,以“视觉”致远——VisionChina2024(上海)机器视觉展圆满闭幕,共绘 机器视觉 展会论坛
- 电池管理系统(BMS)市场调查与技术发展趋势报告(2024) BMS 电池管理系统 BMS报告 电池管理系统报告 研究报告
- 中国机器视觉行业技术标准 机器视觉 政策 技术政策 技术标准
- 2016-2030年全球机器视觉行业市场规模及预测 机器视觉 数据 大数据
- 2022-2030年全球机器视觉应用领域市场规模及数据预测 机器视觉 数据 大数据
- 2022-2030年全球机器视觉应用领域市场规模及数据预测 机器视觉 数据 大数据
- 全球机器视觉产业链竞争情况 机器视觉 数据 大数据
- 中国智能制造主要环节机器视觉应用场景 智能制造 机器视觉
- 2016-2030年中国机器视觉行业生命周期 机器视觉 数据 大数据
- 2016-2030年中国机器视觉行业市场规模及预测 机器视觉 数据 大数据
- IIM信息:全球及中国机器视觉行业分析 机器视觉 机器视觉报告 研究报告
- 中国机器视觉领域企业竞争格局 机器视觉 标杆企业
- 2021-2023年中国机器视觉行业市场占有率及集中度 机器视觉 标杆企业
- 2020-2023年中国机器视觉行业重点企业海内外业务占比 机器视觉 标杆企业
- 中国机器视觉重点企业技术领域与重点技术 机器视觉 标杆企业
- 第104届中国电子展 电子元器件 集成电路 电子 物联网 展会论坛
- 全球手机市场及中国品牌出海市场营销研究报告(2024Q2) 手机 研究报告 手机报告
- 第七届全球电子技术(重庆)展览会 传感器 机器人 智能制造 智慧工厂 工业自动化 展会论坛
- IIM信息发布《全球手机市场及中国品牌出海市场营销研究报告(2024Q2)》 手机 研究报告 手机报告
- 工业和信息化部 国家标准化管理委员会关于印发物联网标准体系建设指南(2 物联网 政策 产业政策 技术政策
- 《物联网标准体系建设指南(2024版)》一图读懂 物联网 政策 产业政策 技术政策
- 工业机器人行业规范条件(2024版)工业机器人行业规范条件管理实施办法(2 工业机器人 机器人 政策 产业政策 技术政策
- 强制性国家标准GB 44497-2024《智能网联汽车 自动驾驶数据记录系统》 智能网联汽车 车联网 自动驾驶 政策 产业政策 技术政策 技术标准
- 工信部:强制性国家标准GB 44495-2024《汽车整车信息安全技术要求》 信息安全 政策 技术政策 技术标准
- 强制性国家标准GB 44496-2024《汽车软件升级通用技术要求》 汽车软件 政策 技术政策 技术标准 车联网 智能汽车 智能网联汽车
- 关于推动新型信息基础设施协调发展有关事项的通知(工信部联通信〔2024〕1 新型信息基础设施 智算中心 超算中心 边缘数据中心 政策 产业政策
- 一图读懂《关于推动新型信息基础设施协调发展有关事项的通知》 新型信息基础设施 智算中心 超算中心 边缘数据中心 量子计算 区块链 政策 产业政策
- VisionChina2024(深圳) 机器视觉 展会论坛
- VisionChina2024(深圳)招展 机器视觉 展会论坛